Name of the Teacher : Dr. Amaresh Bej

Designation : State Aided College Teacher (Category-I)

Course of Studies:B.Sc. UndergraduateSubject:Electronics (Honours)

Paper : ELT-A-CC-2-04-TH: C Programming and Data Structures

Credits : 04
Hours of Lecture : 56

Semester

Objective of the Course : To enable the students to deal with the C language and data

structure efficiently.

Second

Week	Lessons taught	No of classes	Objective of learning
1	C Programming Language Introduction, Importance of C, Character Set, Tokens, Keywords, Identifier, Constants, Basic Data Types, Variables, Declaration and Assigning Values	4	
2	C Programming Language Structure of C Program, Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operators, Increment and Decrement Operators, Conditional Operators, Bit Wise Operators, Expressions and Evaluation of Expressions, Type Cast Operator, Implicit Conversions, Precedence of Operators	4	Understanding of the fundamentals of the C programming language
3	C Programming Language Arrays, Concepts, Declaration, Accessing Elements, Storing Elements, Two-Dimensional and Multi-Dimensional Arrays, Input Output Statement and Library Functions (Math and String Related Functions)	2	
	Review and class test	2	
4	Decision Making, Branching and Looping Decision Making, Branching and Looping, if, if- else, else-if, Switch Statement, Break, for loop, while loop and do loop	4	

	Review and class test	2	
14	Searching and Sorting Postorder and Inorder Traversal (Recursive)	2	
13	Searching and Sorting Linear Search, Binary Search, Trees, Introduction to Trees, Binary Search Tree, Insertion and Searching in a BST, Preorder	4	Development of data handling capabilities in an optimised manner
12	Searching and Sorting Insertion Sort, Selection Sort, Bubble Sort, Merge Sort	4	
11	Data Structures Linked List and its Implementation, Link List Implementation of Stack and Queue, Circular and Doubly Linked List	4	
10	Data Structures Definition of Queue, Circular Queues, Array Implementation of Queues	4	Understanding of data storage mechanism in digital format
9	Data Structures Definition of Stack, Array Implementation of Stack, Conversion of Infix Expression to Prefix and Postfix Expressions, Evaluation of Postfix Expression	4	
	Review and class test	2	
8	Introduction to C++ Object Oriented Programming, Characteristics of an Object-Oriented Language	2	Understanding of an object-oriented programming language using C++
7	Structures Array of Structures, Arrays within Structures, Structures within Structures, Structures and Functions, Pointers	4	
6	Structures Defining and Declaring Structure Variables, Accessing Structure Members, initializing a Structure, Copying and Comparing Structure Variables	4	Understanding of the advanced facilities of the C programming language
5	Decision Making, Branching and Looping Functions, Defining Functions, Function Arguments and Passing, Returning Values from Functions	4	Understanding of the

Name of the Teacher : Dr. Amaresh Bej

Designation: State Aided College Teacher (Category-I)

Course of Studies:B.Sc. UndergraduateSubject:Electronics (Honours)

Semester : Fourth

Paper : ELT-A-CC-4-08-TH: Operational Amplifiers and Applications

Credits : 04
Hours of Lecture : 56

Objective of the CourseTo enable the students to deal with the core component of

the modern electronic circuit.

Week	Lessons taught	No of classes	Objective of learning
1	Basic Operational Amplifier Concept of Differential Amplifiers (Dual Input and Balanced and Unbalanced Output), Constant Current Bias, Current Mirror, Cascaded Differential Amplifier Stages with Concept of Level Transistor	4	
2	Basic Operational Amplifier Ideal Op-Amp and its Characteristics, Block Diagram of Op-Amp (IC 741), Deviations for a Real Op-Amp from Ideal Behaviour	4	Understanding of the fundamentals of operational amplifier
3	Op-Amp Parameters Input offset voltage, Input offset current, Input bias current, Differential input resistance, Input capacitance, offset voltage adjustment range, input voltage range, Common mode rejection ratio, Slew rate, and Supply voltage rejection ratio.	2	(OPAMP)
	Review and class test	2	
4	Op-Amp Circuits and Applications Open and Closed Loop Configuration, Frequency Response, Inverting, Non-Inverting, Summing and Difference Amplifiers, Integrator, Differentiator, Multiplier and Divider, Voltage to Current and Current to Voltage Converter, Instrumentation Amplifier.	4	
5	Comparators Basic Comparator, Level Detector, Voltage Limiters, Schmitt Trigger	4	

6	Signal Generators Concept of Sinusoidal and Relaxation Type, Phase Shift Oscillator, Wien Bridge Oscillator, Square Wave Generator, Triangle Wave Generator, Saw Tooth Wave Generator	4	Creating different necessary circuits used in hardware testing facilities using OPAMP
7	Signal Generators Voltage Controlled Oscillator (IC 566).	4	
8	Review and class test	2	
8	Timers Circuits Multivibrators (IC 555), Functional Block Diagram	2	
9	Timers Circuits Astable and Monostable Multivibrator Circuits and Applications, Phase Locked Loops (PLL), Block Diagram, Phase Detectors, IC565, Voltage Controlled Oscillator (IC 566)	4	Understanding of signal generator, timer, and various power supply
10	Fixed and Variable IC Regulators IC 78xx and IC 79xx (Concepts only), IC LM317, Output Voltage Equation, SMPS, Principle of DC-to-DC Conversion, Block Diagram Representation of SMPS Module	4	mechanisms
11	Review and class test	2	
11	Signal Conditioning Circuits Sample and Hold Systems	2	
12	Signal Conditioning Circuits Active Filters, Butterworth Filter	4	
13	Signal Conditioning Circuits First and Second Order Low Pass and High Pass Filters, Band Pass Filter, Band Reject Filter, All- Pass Filter	4	Learning of analog signal filters used in modern electronic communication systems
14	Signal Conditioning Circuits Log and Antilog Amplifiers	2	
	Review and class test	2	

Name of the Teacher : Dr. Amaresh Bej

Designation : State Aided College Teacher (Category-I)

Course of Studies : B.Sc. Undergraduate Subject : Electronics (Honours)

Semester : Fifth

Paper : ELT-A-CC-5-11-TH: Electronic Instrumentation

Credits : 04
Hours of Lecture : 56

Objective of the Course : To enable the students to understand and design various

electronic instruments and sensors.

Week	Lessons taught	No of classes	Objective of learning
1	Qualities of Measurement Specifications of Instruments and their Static and Dynamic Characteristics, Error (Gross Error, Systematic Error, Absolute Error and Relative Error) and Uncertainty Analysis, Statistical Analysis of Data and Curve Fitting	4	
2	Basic Measurement Instruments PMMC Instrument, Galvanometer, DC Measurement, Ammeter, Voltmeter, Ohm Meter, AC Measurement, Digital Voltmeter (Integrating and Nonintegrating Types) System, Digital Multimeter, Digital Frequency Meter System	4	Understanding the fundamentals of measuring quantities, errors and various measurement techniques
3	Connectors and Probes Low Capacitance Probes, High Voltage Probes, Current Probes, Identifying Electronic Connectors, Audio and Video, RF/Coaxial, USB etc.	4	
4	Review and class test	2	
4	Measurement of Resistance and Impedance Low resistance by Kelvin's double bridge method, Medium Resistance by Voltmeter Ammeter Method and Wheatstone Bridge Method	2	
5	Measurement of Resistance and Impedance High Resistance by Megger AC Bridges, Measurement of Self Inductance, Maxwell's Bridge, Hay's Bridge and Anderson's Bridge, Measurement of C, Schering's Bridge, DeSa Measurement of Capacitance, Schering's Bridge, DeSauty's Bridge, Measurement of Freq., Wien's Bridge uty's Bridge, Measurement of Frequency, Wien's Bridge	4	

7 Review and class test Oscilloscope CRT, Waveform Display and Electrostatic Focusing, Time Base and Sweep Synchronization, Measurement of Voltage, Frequency and Phase by CRO Oscilloscope Oscilloscope Probes, Block Diagram, Working Principle, Advantages and Applications of Dual Trace Oscilloscope, Sampling Oscilloscope, DSO and Powerscope, CRO Specifications (Bandwidth, Sensitivity, Rise Time) Signal Generators Audio Oscillator, Pulse Generator, Function Generators 10 Review and class test 2 Transducers and Sensors 11 Review and class test 2 Transducers and Sensors Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area, Variable Air Gap and Permittivity Types) Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor Ic Sensors) Transducers and Sensors Light Transducers (Photoresistors, Photovoltaic Cells, Photodiodes) Review and class test 2 Visual understanding of amplitude, frequency, and phase of a signal and respective signal generator circuits Visual understanding of amplitude, frequency, and phase of a signal and respective signal generator circuits Learning of the role and physics behind the transducers and sensors used in modern instruments	7	A-D and D-A Conversion Circuit and working of 4 Bit Binary Weighted Resistor Type and R-2R Ladder Type D-A Conversion, Circuit of A-D Conversion, Characteristics A-D and D-A Conversion Successive Approximation ADC, (Mention of Relevant ICs for all)	2	Handling different measuring circuits and analog to digital conversion
CRT, Waveform Display and Electrostatic Focusing, Time Base and Sweep Synchronization, Measurement of Voltage, Frequency and Phase by CRO Oscilloscope Oscilloscope Probes, Block Diagram, Working Principle, Advantages and Applications of Dual Trace Oscilloscope, CRO Specifications (Bandwidth, Sensitivity, Rise Time) Signal Generators 10 Audio Oscillator, Pulse Generator, Function Generators 11 Review and class test 2 Transducers and Sensors 11 Classification of Transducers, Basic Requirement/Characteristics of Transducers Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area, Variable Air Gap and Permittivity Types) Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Light Transducers (Photoresistors, Photovoltaic Cells, Photodiodes) Visual understanding of amplitude, frequency, and phase of a signal and respective signal generator circuits 2 Visual understanding of amplitude, frequency, and phase of a signal and respective signal generator circuits 4 Learning of the role and physics behind the transducers and sensors used in modern instruments	7	,	2	
Oscilloscope Probes, Block Diagram, Working Principle, Advantages and Applications of Dual Trace Oscilloscope, Sampling Oscilloscope, DSO and Powerscope, CRO Specifications (Bandwidth, Sensitivity, Rise Time) Signal Generators 10 Audio Oscillator, Pulse Generator, Function Generators 11 Review and class test 12 Transducers and Sensors Classification of Transducers, Basic Requirement/Characteristics of Transducers Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area, Variable Air Gap and Permittivity Types) Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Transducers and Sensors Light Transducers (Photoresistors, Photovoltaic Cells, Photodiodes)	8	CRT, Waveform Display and Electrostatic Focusing, Time Base and Sweep Synchronization, Measurement of Voltage,	4	
10 Audio Oscillator, Pulse Generator, Function Generators 11 Review and class test 2 Transducers and Sensors 11 Classification of Transducers, Basic Requirement/Characteristics of Transducers Transducers and Sensors Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area, Variable Air Gap and Permittivity Types) Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Transducers and Sensors Light Transducers (Photoresistors, Photovoltaic Cells, Photodiodes)	9	Oscilloscope Probes, Block Diagram, Working Principle, Advantages and Applications of Dual Trace Oscilloscope, Sampling Oscilloscope, DSO and Powerscope, CRO Specifications	4	amplitude, frequency, and phase of a signal and respective signal
Transducers and Sensors Classification of Transducers, Basic Requirement/Characteristics of Transducers Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area, Variable Air Gap and Permittivity Types) Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Transducers and Sensors Light Transducers (Photoresistors, 2 Photovoltaic Cells, Photodiodes)	10	Audio Oscillator, Pulse Generator, Function	4	
11 Classification of Transducers, Basic Requirement/Characteristics of Transducers Transducers and Sensors Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area, Variable Air Gap and Permittivity Types) Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Transducers and Sensors Light Transducers (Photoresistors, Photovoltaic Cells, Photodiodes)	11	Review and class test	2	
Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area, Variable Air Gap and Permittivity Types) Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Transducers and Sensors Light Transducers (Photoresistors, Photovoltaic Cells, Photodiodes) 4 Learning of the role and physics behind the transducers and sensors used in modern instruments	11	Classification of Transducers, Basic	2	
Transducers and Sensors Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement, Velocity and Acceleration (Translational and Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Transducers and Sensors Light Transducers (Photoresistors, Photovoltaic Cells, Photodiodes)	12	Active and Passive Transducers, Resistive (Potentiometer, Strain Gauge, Theory, Types, Temperature Compensation and Applications), Capacitive (Variable Area,	4	physics behind the transducers and sensors used in modern
Light Transducers (Photoresistors, 2 Photovoltaic Cells, Photodiodes)		Inductive (LVDT) and Piezoelectric Transducers, Measurement of Displacement,		
Review and class test 2	13	Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors)	4	instruments
		Rotational), Measurement of Pressure (Manometers, Diaphragm, Bellows), Measurement of Temp. (RTD, Thermistor, Thermocouple, Semiconductor IC Sensors) Transducers and Sensors Light Transducers (Photoresistors,		instruments

Name of the Teacher : Dr. Amaresh Bej

Designation : State Aided College Teacher (Category-I)

Course of Studies:M.Sc. PostgraduateSubject:Electronics ScienceSemester:Second

EST 202: Digital Circuits, Microprocessors and Micro-

controllers

Credits : 04
Hours of Lecture : 56

Paper

Objective of the Course : To enable the students to learn digital electronics,

microprocessor, and micro controllers.

Week	Lessons taught	No of classes	Objective of learning
1	Digital Circuits Combinational logic circuits: multiplexers, decoders, demultiplexers, parity generator/checker, arithmetic circuits	4	
2	Digital Circuits Sequential circuits: flip-flops, asynchronous and synchronous circuits, flow tables, state tables and state diagrams, timing diagram. Shift-registers and counters	4	
3	Digital Circuits Data converters: ADCs and DACs. Display and display drivers: LED, 7-segment display	4	Understanding the fundamental digital circuits, memories, and FPGA
4	Semiconductor memories Memory organization, address decoding, access times, SRAM, DRAM, ROM, PROM, EPROM, flash memory	4	
5	HDL Introduction to HDL. Digital system design using HDL, FPGA	4	
6	Review and class test	2	

6	Microprocessor Introduction to microprocessors (8085)	2	
7	Microprocessor Block diagram, address and data bus	4	
8	Microprocessor Assembly language programming	4	
9	Microprocessor Interrupts. Introduction to 8086 and advanced microprocessors	4	Understanding microprocessor architecture and developing the skill for low/core level code writing
10	Microprocessor Interfacing of memory, I/O devices and supporting ICs	4	
11	Microprocessor Analog interfacing and industrial control	2	
	Review and class test	2	
12	Microcontroller 8051 microcontroller architecture and programming	4	
13	Microcontroller Interfacing of I/O devices	4	Developing electronically programmable circuits
14	Microcontroller 8051 based system design	2	using microcontrollers
	Review and class test	2	

Name of the Teacher : Dr. Amaresh Bej

Designation : State Aided College Teacher (Category-I)

Course of Studies : M.Sc. Postgraduate
Subject : Electronics Science

Semester : Third

Paper : EST 302: VLSI Technology

Credits : 04
Hours of Lecture : 56

Objective of the Course To enable the students to VLSI technology used in fabricating

integrating circuits.

Week	Lessons taught	No of classes	Objective of learning
1	Fundamentals Clean room and its usage, crystal growth (Czchrosky & floating zone), epitaxial growth, wafer cleaning.	4	
2	Thermal Oxidation Uses of oxides, dry and wet oxidation, oxidation kinetics, ultrathin oxides, oxinitrides, oxidation systems.	4	
3	Diffusion Fick's law, constant-source and constant-dose diffusion, diffusion systems, diffusion mechanisms	4	Understanding the basic process of VLSI technology
4	Ion-implantation Mechanism, system, advantages, implant damage, damage annealing	4	
5	Annealing Furnace annealing, rapid thermal annealing, rapid thermal oxidation (RTO), damage annealing	4	
6	Review and class test	2	
6	Chemical vapor deposition Deposition of oxide, nitride and poly-silicon, metals	2	

7	Physical vapor deposition Thermal evaporation, e-beam evaporation, sputtering, junction spiking, electromigration, step coverage	4	
8	Lithography Photolithography and photoresist, steps, pattern transfer, resist stripping	4	Understanding the various protocols of fabrication in VLSI technology
9	Lithography Introduction to e-beam and x-ray lithography	4	
10	Etching Wet and dry etching, plasma etching	4	
11	Etching Reactive ion etching (RIE)	2	
	Review and class test	2	
12	Process integration n-MOS, CMOS, BiCMOS, SOI and FinFET technology	4	
13	Finalization High and low-k gate dielectrics, multi-level metallization	4	Understanding the finalization process
14	Finalization Materials for local and global interconnects, silicide and SALICIDE, CMP	2	
	Review and class test	2	

Name of the Teacher : Dr. Amaresh Bej

Designation : State Aided College Teacher (Category-I)

Course of Studies:M.Sc. PostgraduateSubject:Electronics Science

Semester : Fourth

Paper : ESE 404: DSP and Computer Networking (Part)

Credits : 02 Hours of Lecture : 28

Objective of the CourseTo enable the students to understand the backgrounds of a

computer network.

Week	Lessons taught	No of classes	Objective of learning
1	O.S.I. reference model and LAN OSI reference model, TCP/IP model, circuit switching, packet switching, various transmission media, LAN Topologies, LAN components- NIC, hubs, switches, MAN and WAN- routers, repeaters, gateways	4	
2	Error control and flow control techniques, MAC layer	4	
3	Internet Protocol and Routing Addressing scheme, subnet and supernetting, routing schemes	4	
4	Transport layer Reliability of transmission, ports, connections and endpoints, concept of sliding windows	4	Understanding the fundamentals of a computer network
5	Transport layer TCP segment format, establishing, closing and resetting a TCP connection, TCP port numbers.	4	
6	Introduction to Wireless Networks GSM, MANET	4	
7	Introduction to Wireless Networks Bluetooth	2	
	Review and class test	2	

Name of the teacher:- Gul Mohammad

Designation:- Assistant Professor, Department of Electronics

UG Semester 3

Course taught:- ELT-A-CC-3-07-TH: Electromagnetics

Credits: 04

Lecture Hours: 56+2

Objective of the Course:- To enable the students, a fundamental understanding of

electromagnetic theory and its applications in various engineering fields.

Week	Lessons Taught	No of classes	Learning Objective
1	Vector Analysis	4	Students will be able
2	Poisson's Equation and Laplace Equation	4	to apply vector analysis principles to solve Poisson's and Laplace's equations in various mathematical and physical contexts.
3	Electrostatics 1: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications,	4	students will be able
4	Electrostatics 2: Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics,	4	to demonstrate a comprehensive understanding of electrostatic principles and apply them to solve complex problems in various contexts.
5	Electrostatics 3: Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density.	4	
6	Magnetostatics 1: Biot Savart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law.	4	Students will be able
7	Magnetostatics 2: Maxwell's Equation and Applications, Magnetic Flux and Magnetic Flux Density – Maxwell's Equation, Scalar and Vector Magnetic Potentials.	4	to analysed and predict the behaviour of static magnetic fields and their interactions with charged particles and currents.
8	Magnetostatics 3: Magnetization in Materials and Permeability, Anisotropic Materials, Magnetic Boundary Conditions, Inductors and Inductances, Mutual and Self Inductance, Magnetic Circuits, Magnetic Energy, Forces, Torque and Moment	3	
9	Time-Varying Fields and Maxwell's Equations 1: Faraday's Law of Electromagnetic Induction – Maxwell's Equation.	4	Students will be able to analysed time-varying fields and
10	Time-Varying Fields and Maxwell's Equations 2: Stationary Circuit in Time-Varying Magnetic Field, Transformer and Motional EMF,	4	apply Maxwell's equations to predict electromagnetic

			T .
	Displacement Current, Maxwell's Equations in		phenomena.
	Differential and Integral Form and Constitutive		
	Relations.		
11	Time-Varying Fields and Maxwell's Equations	3	
	3: Potential Functions, Lorentz Gauge and		
	Wave Equation for Potentials, Concept of		
	Retarded Potentials, Electromagnetic Boundary		
	Conditions.		
12	Electromagnetic Wave Propagation 1: Time-	4	
	Harmonic Electromagnetic Fields,		
	Electromagnetic Spectrum, Wave Equation in a		
	Source Free Isotropic Homogeneous Media		
13	Electromagnetic Wave Propagation 2:	4	
	Uniform Plane Waves in Lossless and Lossy		
	Unbounded Homogeneous Media, Uniform		Understand the
	Plane Waves in Good Dielectrics and		principles and
	Conductor, Skin Effect, Wave Polarization,		mechanisms
	Reflection and Transmission of Plane Waves at		governing
	Normal and Oblique Incidence		electromagnetic
14	Electromagnetic Wave Propagation 2:	4	wave propagation.
	Snell's Law, Fresnel's Equation, Brewster's		
	Angle, Wave Propagation in Dispersive Media,		
	Normal and Anomalous Dispersion, Concept of		
	Phase and Group Velocity, Electromagnetic		
	Power and Poynting Vector and Poynting		
	Theorem.		
15	Review and Class Test	2	To review

Name of the teacher:- Gul Mohammad

Designation:- Assistant Professor, Department of Electronics

UG Semester 4

Course taught:- ELT-A-CC-4-10-TH: Signals and Systems

Credits: 04 Lecture Hours: 56

Objective of the Course:- To provide students with an understanding of fundamental principles and techniques for analyzing and manipulating signals in both time and frequency domains within various engineering applications.

Week	Lessons Taught	No of classes	Learning Objective
1	Signals and Systems 1: Continuous and Discrete Time Signals, Digital Signal, Types of Signals	4	Students will understand the
2	Signals and Systems 2: Signals in Time, Spatial and Frequency Domain, Transformation of the Independent Variable	4	fundamental principles and mathematical representations of signals and systems, including analysis techniques and their applications in engineering and communication systems.
3	Signals and Systems 3: Exponential and Sinusoidal Signals, Impulse and Unit Step Functions, Continuous and Discrete Time Systems and their Classifications, Basic System Properties.	4	
4	Linear Time Invariant Systems (LTI) 1: Discrete and Continuous Time LTI Systems, Properties of LTI Systems	4	students will understand the
5	Linear Time Invariant Systems (LTI) 2: Convolution, Commutative, Distributive, Associative, LTI Systems with and without Memory.	4	principles and properties of Linear Time Invariant
6	Linear Time Invariant Systems (LTI) 3: Invariability, Causality, Stability, Unit Step Response, Differential and Difference Equation Formulation, Block Diagram Representation of First Order Systems.	6	Systems (LTI) and their application in signal processing and control.
7	Fourier Series 1: Fourier Series Representation of Periodic Signals, Continuous Time Periodic Signals	4	students will be able to understand and
8	Fourier Series 2: Convergence of the Fourier Series, Properties of Continuous Time Fourier Series	4	apply Fourier series to analyze periodic functions and decompose them into a sum of sinusoidal
9	Fourier Series 3: Discrete Time Periodic Signals, Properties of Discrete Time Fourier Series	4	
10	Fourier Series 4: Frequency Selective Filters, Problem solving on this chapter.	4	functions.

11	Fourier Transform 1: Aperiodic Signals, Periodic	6	
	Signals, Problem solving		
12	Fourier Transform 2: Properties of Continuous	6	Students will be able
	Time Fourier Transform, Convolution and		to apply Fourier
	Multiplication Properties, Problem solving		Transform to analyze
13	Fourier Transform 3: Properties of Fourier	4	and synthesize
	Transform and Basic Fourier Transform Pairs,		signals in both time
	Problem solving.		and frequency
14	Z-Transform 1: Introduction to Z-Transform,	4	domains.
	Region of Convergence, Properties of Z-		
	Transforms,		
15	Z-Transform 2: Inverse Z-Transforms, Relation	6	Students will be able
	with Laplace and Fourier Transforms, Condition		to apply the Z-
	of Stability, Application of Z-Transforms.		Transform method to
16	Problem solving on Z-Transform	4	analyze discrete-time
	-		signals and systems
			in the frequency
			domain.

Name of the Teacher : Dr. Adrija Banerjee

Designation : State Aided College Teacher (Category-I)

Course of Studies : B.Sc. Undergraduate Subject : Electronics (Honours)

Semester : Third

Paper : ELTA-CC-3-06-TH: Electronic Circuits

Credits : 04 **Hours of Lecture** : 56

Objective of the Course : To learn about the theoretical principles and practical applications of various electronic circuits

Week	Lessons taught	No. of classes	Objective of learning
1	Diode Circuits Piece-Wise Linear Characteristics of Diode, DC Load Line Analysis, Quiescent (Q) Point, Clipping and Clamping Circuits	4	
2	Diode Circuits Rectifiers, Half-Wave Rectifier, Full-Wave Rectifier (Center Tapped and Bridge), PIV, Ripple Factor, Efficiency	4	To learn about the
3	Diode Circuits Filters, Types, Circuit Diagram and Explanation of Shunt Capacitor, Filter with Waveforms, Zener Diode Regulator, Circuit Diagram, Explanation for Load and Line Regulation	4	constructions, working principles and practical applications of the basic diode circuits
	Review and Class Test	2	
4	Bipolar Junction Transistor Circuits Review of CE, CB Characteristics and Regions of Operation. Hybrid Parameters, re Model, Transistor Biasing, DC Load Line, Operating Point, Thermal Runaway, Stability and Stability Factor	2	To learn about the
5	Bipolar Junction Transistor Circuits Fixed Bias with and without Emitter Resistor, Collector to Base Bias, Voltage Divider Bias and Emitter Bias, Transistor as a Switch, Circuit and Working, Darlington Pair and its Applications	4	constructions, working principles and practical applications of the basic BJT circuits

6	Bipolar Junction Transistor Circuits BJT Amplifier, Voltage and Power Amplifier DC and AC Load Line Analysis, Hybrid Model of CE Configuration, Quantitative Study of Frequency Response of CE Amplifier	4	
7	Bipolar Junction Transistor Circuits Effect on Gain and Bandwidth for Cascaded RC Coupled CE Amplifier	2	
	Review and Class Test	2	
8	Feedback Amplifiers Concept of Feedback, Negative and Positive Feedback, Types of Feedback Circuits, Advantages and Disadvantages of Negative Feedback, Voltage (Series and Shunt) and Current (Series and Shunt) Feedback Amplifiers	4	To learn about the
9	Feedback Amplifiers Effect of Negative Feedback on Gain, Input and Output Impedances, Bandwidth and Distortion, Barkhausen Criteria	4	basic principle, characteristics, advantages and disadvantages of
10	Feedback Amplifiers Phase Shift Oscillator, Colpitts Oscillator, Hartley Oscillator, Regulated Power Supply, Series and Shunt (using BJT)	4	feedback and its application in various electronic circuits
	Review and Class Test	2	
11	MOSFET Circuits Review of Depletion and Enhancement MOSFET, Biasing of MOSFETs, Small Signal Parameters	2	
12	MOSFET Circuits Common Source Amplifier Circuit Analysis, CMOS Circuits Power Amplifiers Difference between Voltage and Power Amplifier, Classification of Power Amplifiers, Class A, Class B, Class C, Class AB and their Comparisons	4	To learn about the constructions, working principles and practical applications of the MOSFET circuits, power amplifiers and single-tuned amplifiers

13	Power Amplifiers Operation of Class A Single Ended Power Amplifier, Operation of Transformer Coupled Class A Power Amplifier, Efficiency, Operation of Complementary Symmetry Class B Push Pull Power Amplifier, Crossover Distortion, Heat Sinks	4	
14	Single Tuned Amplifiers Circuit Diagram, Working and Frequency Response, Limitations of Single Tuned Amplifier, Applications of Tuned Amplifiers in Communication Circuits	2	
	Review and Class Test	2	

Dr. Adrija Banerjee Name of the Teacher

State Aided College Teacher (Category-I) Designation

Course of Studies B.Sc. Undergraduate Electronics (Honours) **Subject**

Semester Six

Paper ELT-A-CC-6-14-TH: Photonics

Credits 04 **Hours of Lecture** 56

To learn the basic principles, characteristics and practical **Objective of the Course**:

applications of photonics

Week	Lessons taught	No. of classes	Objective of learning
1	Light as Electromagnetic Wave Plane Waves in Homogeneous Media, Concept of Spherical Waves, Reflection and Transmission at an Interface, Total Internal Reflection, Brewster's Law, Stoke's Law, Interaction of Electromagnetic Waves with Dielectrics, Origin of Refractive Index, Dispersion	4	To learn about the wave characteristics of light and different types of optical phenomena like interference and diffraction
2	Interference Superposition of Waves of Same Frequency, Concept of Coherence, Interference using Division of Wavefront and Division of Amplitude, Young's Double Slit, Thin Film Interference, Anti-Reflecting Films, Newton's Rings, Michelson Interferometer, Holography	4	
3	Diffraction Huygen's Principle, Diffraction Integral, Fresnel and Fraunhoffer Approximations, Fraunhoffer Diffraction by Single Slit, Rectangular Aperture, Double Slit, Rayleigh Criterion of Limit of Resolution, Resolving Power of Microscopes and Telescopes, Diffraction Grating, Resolving Power and Dispersive Power	4	
4	Review and Class Test	2	

Polarization Linear, Circular and Elliptical Polarization	2	
Polarization Polarizer-Analyzer and Malus' Law, Double Refraction by Crystals, Interference of Polarized Light	4	
Polarization Wave Propagation in Uniaxial Media, Half Wave and Quarter Wave Plates, Faraday Rotation and Electro-Optic Effect	4	To learn about the basic characteristics and effects of polarization
Review and Class Test	2	
Light Emitting Diodes Construction, Materials, Operation, Concept of Quantum Efficiency	2	
Lasers Interaction of Radiation and Matter, Einstein Coefficients, Condition for Amplification, Laser Cavity, Threshold for Laser Oscillation, Line Shape Function, Examples of Common Lasers, Semiconductor Injection Laser Diode	4	To learn about the theories, working principles and practical applications of LED and Lasers
Review and Class Test	2	anu Lasers
Photodetectors Bolometer, Photomultiplier Tube, Charge Coupled Device	2	
Photodetectors Photo Transistors and Photodiodes(p-i-n, Avalanche), Quantum Efficiency and Responsivity	4	To learn about the theories, working principles and practical applications of
LCD Displays Types of Liquid Crystals, Principle of Liquid Crystal Displays, Applications, Advantages over LED displays	2	photodetectors and LCD displays
Review and Class Test	2	
	Polarization Polarizer-Analyzer and Malus' Law, Double Refraction by Crystals, Interference of Polarized Light Polarization Wave Propagation in Uniaxial Media, Half Wave and Quarter Wave Plates, Faraday Rotation and Electro-Optic Effect Review and Class Test Light Emitting Diodes Construction, Materials, Operation, Concept of Quantum Efficiency Lasers Interaction of Radiation and Matter, Einstein Coefficients, Condition for Amplification, Laser Cavity, Threshold for Laser Oscillation, Line Shape Function, Examples of Common Lasers, Semiconductor Injection Laser Diode Review and Class Test Photodetectors Bolometer, Photomultiplier Tube, Charge Coupled Device Photodetectors Photo Transistors and Photodiodes(p-i-n, Avalanche), Quantum Efficiency and Responsivity LCD Displays Types of Liquid Crystals, Principle of Liquid Crystal Displays, Applications, Advantages over LED displays	Polarization Polarizer-Analyzer and Malus' Law, Double Refraction by Crystals, Interference of Polarized Light Polarization Wave Propagation in Uniaxial Media, Half Wave and Quarter Wave Plates, Faraday Rotation and Electro-Optic Effect Review and Class Test Light Emitting Diodes Construction, Materials, Operation, Concept of Quantum Efficiency Lasers Interaction of Radiation and Matter, Einstein Coefficients, Condition for Amplification, Laser Cavity, Threshold for Laser Oscillation, Line Shape Function, Examples of Common Lasers, Semiconductor Injection Laser Diode Review and Class Test 2 Photodetectors Bolometer, Photomultiplier Tube, Charge Coupled Device Photodetectors Photo Transistors and Photodiodes(p-i-n, Avalanche), Quantum Efficiency and Responsivity LCD Displays Types of Liquid Crystals, Principle of Liquid Crystal Displays, Applications, Advantages over LED displays

12	Guided Waves and Optical Fiber TE and TM Modes in Symmetric Slab Waveguides, Effective Refractive Index, Field Distributions	4	
13	Guided Waves and Optical Fiber Dispersion Relation and Group Velocity, Step Index Optical Fiber, Total Internal Reflection, Concept of Linearly Polarized Waves in Step Index Circular Dielectric Waveguides, Single Mode and Multimode Fibers, Attenuation and Dispersion in Optical Fiber	4	To learn about the theories, working principles and practical applications of guided waves and optical fiber
14	Guided Waves and Optical Fiber Basic Idea of OEIC (Optoelectronic Communication System)	2	
	Review and Class Test	2	

Dr. Adrija Banerjee Name of the Teacher

State Aided College Teacher (Category-I) Designation

Course of Studies M.Sc. Postgraduate **Subject Electronics Science**

Semester First

Paper EST 104: Semiconductor Devices

Credits 04 **Hours of Lecture** 56

To learn about the basic principles, characteristics and **Objective of the Course**:

applications of semiconductor devices

Week	Lessons taught	No. of classes	Objective of learning
1	Elements of semiconductor physics Electron and hole concentrations in the bands for degenerate and nondegerate semiconductors, effective density of states in the conduction and valence band	4	
2	Elements of semiconductor physics Distinction between shallow and deep impurities, charge neutrality condition, calculation of Fermi level, features of SRH processes	4	To learn about the basic elements of semiconductor physics
3	Basic equations for device operations Basic carrier transport mechanisms in semiconductors, electron and hole current densities, continuity equations; Poisson's equation and distribution of electric field and potential.	4	
	Review and Class Test	2	
4	Metal-semiconductor diode Device structure and energy band diagram, Schottky effect, barrier height	2	To learn about the
5	Metal-semiconductor diode Voltage dependence of semiconductor surface potential, current transport mechanisms, device capacitance, series resistance effect, ohmic contact	2	basic principles and characteristics of Metal-semiconductor diode
	Review and Class Test	2	

6	P-N junction diode Recapitulation of basic features for abrupt and linearly graded junctions, concept of quasi Fermi level and derivation of Shockley equation, generation and recombination currents, diffusion capacitance, breakdown mechanisms: thermal instability, tunneling and avalanche multiplication, transient and noise behavior	4	
7	P-N junction diode Device performance as rectifier, voltage regulator, varistor, varactor, application of P-N junction as solar cell	2	To learn about the basic principles, characteristics and applications of
	Semiconductor hetero junction diode Device structure and energy band diagram, concept of band discontinuities, built-in potential	2	semiconductor diodes and bipolar junction transistors
	Semiconductor hetero junction diode Device capacitance, current transport mechanism	2	
8	Bipolar Junction Transistor Device structure, band diagrams, current components, amplification, Ebers-Moll relations, microwave BJT	2	
9	Bipolar Junction Transistor Ebers-Moll relations, microwave BJT	2	
	Review and Class Test	2	
10	Field-Effect Transistors: JFET Device structure and operation, gradual channel approximation, pinch-off and saturation, I-V characteristics, normally-on and -off FET	4	
	MESFET Device structure and operation, energy band diagram and operation	2	To learn about the basic principles, characteristics and
11	MOS capacitors Energy band diagram, accumulation, depletion and inversion mode of operation, threshold voltage, flat band voltage, defects in MOS system, capacitance-voltage characteristics	2	applications of various Field-effect Transistors like JFET, MESFET and MOSFET
12	MOSFET Device structure and operation, band diagram, I-V characteristics, subthreshold current and other performance parameters, parasitic effects	4	WIOSEE
13	Review and Class Test	2	

	Power Electronic Devices Basic Characteristics of SCR, reverse and forward blocking, two transistor analogy	2	To learn about the basic principles,
14	Power Electronic Devices Constructions and the basic characteristics of DIAC, TRIAC, IGBT and UJT, and their applications	2	characteristics and applications of power electronic devices
	Review and Class Test	2	

Name of the Teacher : Dr. Adrija Banerjee

Designation : State Aided College Teacher (Category-I)

Course of Studies : M.Sc. Postgraduate
Subject : Electronics Science
Semester : Fourth

Paper : EST 401: Control and Instrumentation

Credits : 04 **Hours of Lecture** : 56

To study the basic concepts and different types of analysis of

Objective of the Course: the control system along with its practical applications in

modern electronic instruments

Week	Lessons taught	No. of classes	Objective of learning
1	Introduction to control system, open loop and closed loop control system, system sensitivities, error amplifier, on-off controller, Proportional (P), Proportional-Integral (PI), Proportional-Derivative (PD), and PID controllers	4	To learn about the basic concepts of a
2	Transfer function, block diagram and signal flow graph	4	control system and its analysis
3	Review and Class Test	2	
3	Stability analysis	2	
4	Stability analysis	2	To learn about the different methods of stability analysis of a control system
4	Root locus techniques	2	
5	Root locus techniques	2	
3	Polar plot, Nyquist analysis	2	
6	Bode analysis, Nichol's chart design	2	
U	Review and Class Test	2	
7	State variable analysis	4	To learn about the method of state
8	Introduction to nonlinear control system analysis	2	variable analysis and the basic concept of
	Review and Class Test	2	nonlinear control system
9	Characteristics of instruments and measuring systems, errors in measurements, dynamic characteristics of instruments and measurement systems, galvanometers, ammeter, voltmeter, potentiometers	4	To learn about the basic characteristics, working principles and practical applications

10	AC bridges, watt meter, optoelectronic measurements	4	of various measuring instruments
11	Review and Class Test	2	
11	Oscilloscopes: CRT, CRO,	2	To learn about the
	Storage and digital storage oscilloscope	2	basic constructions, working principles and
12	Review and Class Test	2	applications of oscilloscopes
13	Wave analyzer and spectrum analyzer. Transducers	4	To learn about the basic constructions, working principles and
	Interfacing: RS 232 serial, parallel, IEEE 488, introduction to interfacing softwares	2	applications of wave analyzer, spectrum
14	Review and Class Test	2	analyzer, and transducers. Also a brief introduction to the interfacing

Name of the Teacher:- Imtiaz Ahammad

Designation:- Assistant Professor, Department of Electronics

Class – M.Sc. PG Semester - II

Course Taught:- EST 204: Communication

Credits: 04

Lecture Hours: 56 **Objective of the Course:-**

- To identify the basic elements of a communication system
 To analyse baseband signals in time domain and in frequency domain
- 3. To compare and contrast various analog and digital modulation and demodulation techniques
- 4. To evaluate the performance of modulation and demodulation techniques in various transmission environments
- 5. To analysis of noise and its impact on different modulation techniques.

Week	Lessons Taught	No of	Learning Objective
	G	classes	
1	Analog Communication: Basic signal theory: Introduction to communication systems, difference between analog and digital communication process.	4	To know the basic elements of a communication system & to understand the basic concepts of the analog communication systems &
2	Amplitude modulation:Basic principles of DSB, SSB & VSB amplitude modulation systems,	4	analyze various analog continuous wave modulation and demodulation
3	Modulation and demodulation principles, modulators and demodulators, Quadrature amplitude modulation (QAM).	4	techniques
4	Frequency & phase modulation: Modulators and demodulators	4	Understand the concept of Angle modulation and demodulation and
5	Frequency discriminators and phase locked loops, receivers, comparison of the effect of noise in different processes.	4	attain the knowledge about the functioning of different AM, FM Transmitters & Receivers.
6	Noise and noise analysis.	4	To understand the influence of noise on the performance of analog communication systems
7	Pulse Modulation: Sampling, PAM, PWM, PPM, delta modulation, ADM.	4	To understand the various processes like sampling, PCM, delta modulation, adaptive delta modulation
8	Review and Class Test	2	To Review what is taught
9	Digital Communication : Quantization: Uniform & non-uniform, pulse code modulation, basic idea of digital compression of speech signals, echo control.	4	To understand the detail on the various schemes used to transmit digital signals, including ASK,FSK, PSK, BPSK, QPSK and digital coding
10	ASK, FSK, PSK, BPSK and QPSK	4	techniques, channel coding techniques
11	Principle of data transmission; Data transmission in presence of noise, Fundamentals of digital signal processing, correlations & autocorrelations,	4	that are used in modern telecommunication system
12	General communication applications: Principles of telephony, television fundamentals, radar principles,	4	To understand the concepts of satellite subsystems and designing of satellite uplink and downlinks
13	Mobile and cellular telephony, Satellite communications	4	

14	Fiber Optic Communication.	4	Students should be able to understand the functionality of each components of a fiber optic communication system.
15	Review and Class Test	2	To Review what is taught

Name of the Teacher:- Imtiaz Ahammad

Designation:- Assistant Professor, Department of Electronics

Class - B.Sc. UG Semester - I

Course Taught:- ESE 401: VLSI Design

Credits: 04

Lecture Hours: 56 Objective of the Course:-

- 1. To build upon the theoretical, mathematical and physical analysis of digital VLSI circuits, for proper understanding of concept, working, analysis and design.
- 2. To use modelling of the various semiconductor devices for digital VLSI circuit design
- 3. To learn the basic theory of MOS Transistors, basic steps of fabrication
- 4. To learn basic CMOS Circuits and CMOS process technology.
- 5. To impart in-depth knowledge about analog and digital CMOS circuits

Week	Lessons Taught	No of	Learning Objective
		classes	
1	Overview of VLSI design: design flow, design hierarchy and design styles.	4	Understanding the basics of the physical design process
2	CMOS processing technology: process flow, concept of masks, stick diagram, design rules and layout.	4	of VLSI design flow analysing of the design rules and layout diagram
3	CMOS inverter design issues: circuit characterization and performance estimation, voltage transfer characteristics	4	Understanding & analyzing the performance of CMOS Inverter circuits on the basis
4	Noise margins, switching characteristics and gate delay, power Dissipation.	4	of their operation and working.
5	Combinational and sequential circuit design: design of logic circuits, complex circuits, Euler's rule. Design of latches and flip-flops	4	Understanding combinational & sequential CMOS circuit with various
6	Clocking strategies. Pseudo-nMOS circuits, switch-logic based design.	4	topologies like domino logic, Bi-CMOS etc.
7	BiCMOS technology and circuits, I/O structures	4	
8	Dynamic logic circuit design: charge storage & leakage. Precharge-evaluate, domino & zipper logic. Dynamic shift register design.	4	Understanding the Dynamic Logic Circuit Concepts and CMOS Dynamic Logic Families
9	Review and Class Test	2	To Review what is taught
10	Chip design options: custom and semicustom design, gate array, standard cell and programmable logics.	4	Understanding the design of memories with efficient architectures to improve
11	Semiconductor memories: memory organization, sense amplifier, drivers and buffers.	4	access times, power consumption
12	Design of SRAM, DRAM, and non-volatile memory devices.	4	
13	Analog CMOS design: MOSFET capacitances & small signal models. MOS resistor, MOS current source, current mirror circuits	4	Understanding of the current mirrors and Differential amplifier & apply the entire
14	MOS voltage source. CMOS OPAMP design: differential amplifier, output stage and compensation techniques.		concepts to design CMOS amplifier
15	Review and Class Test	2	To Review what is taught

Name of the Teacher:- Tridibendra Narayan Chattopadhyay

Designation:- Associate Professor, department of Electronics

PG Semester 1

Course Taught:- EST 101: Mathematical and Computational Methods

Lecture Hours: 48+2

Objective of the Course:- To enable the students, understand the mathematical background of physics and to compute numerical solutions to problems of physics.

Week	Lessons Taught	No of classes	Learning Objective
1	Introduction to complex variables	4	To enable students understand the
2	Integral transforms and application in signal processing,	4	mathematical background of Physics
3	Matrices,	4	
4	Differential equations	4	
5	Special functions	4	
6	Computational algorithms, errors in numerical computation, interpolation	4	To enable students understand the numerical methods of solution of
7	Numerical differentiation and integration,	4	different problems of mathematical physics
8	Numerical algorithms and methods to solve transcendental equations, linear and nonlinear ordinary and partial differential Equations.	4	
9	optimization and curve fittings.	4	
10	Familiarization with computers: programming languages, variables and constants	4	To familiarise the students with, "C"
11	Arrays,program structures, jump, loop, conditional branching	4	programming language
12	Subroutines and functions	4	
13	Review and Class Test	2	To Review what is taught

Name of the Teacher:- Tridibendra Narayan Chattopadhyay

Designation:- Associate Professor, department of Electronics

PG Semester 1

Course Taught:- EST 102: Quantum Mechanics

Lecture Hours: 48+2

Objective of the Course:- To enable the students understand, the formalism of quantum mechanics and use of it to solve physics problems.

Week	Lessons Taught	No of classes	Learning Objective
1	Review of classical mechanics and historical origin of quantum theory	4	Understanding the basics and formalism of
2	Formalism of quantum mechanics. Vector space and Hilbert Space.	4	quantum mechanics
3	Operator method of solving quantum mechanical problems	4	
4	Angular momentum and spin	4	
5	Solving hydrogen atom problem	4	7
6	Perturbation method for non-degenerate and degenerate quantum system and applications	4	Understanding the use of quantum Mechanics in
7	Time dependent perturbation theory	4	different physical
8	Harmonic and constant perturbation	4	problems.
9	variational method	4	
10	WKB approximation and applications	4	
11	Scattering theory, identical particles, interaction of radiation with matter	4	
12	Introduction to second quantization.	4	
13	Review and Class Test	2	To Review what is taught

Name of the Teacher:- Tridibendra Narayan Chattopadhyay

Designation:- Associate Professor, department of Electronics

PG Semester 3

Course Taught:- CBCC A-3 Digital Signal Processing

Lecture Hours: 48+2

Objective of the course:- This course will enable the students to enhance the analytical ability in facing the challenges posed by growing trends in communication, control and signal processing areas.

Week	Lessons Taught	No of	Learning Objective
		classes	
1	Introduction to Discrete-time Signals and Systems	4	To enable the students
2	Classification of Discrete time signals and sequences	4	understand the basic
	Linear time-invariant (LTI) systems, (BIBO) stability,		concepts of Digital
	and causality		signal processing
3	linear convolution in time Domain, graphical approach	4	
4	The concept of z-TransformsRegion of convergence;	4	To enable the students
	properties; inverse z transform		understand and use the
5	Realization of digital filter structures (direct forms type	4	mathematical tools
	II, transposed form, cascaded form, parallel form)		needed for DSP
6	Discrete-time Signals in Transform Domain	4	
	Discrete Fourier Series(DFS).		
7	Discrete-time Fourier Transforms(DTFT)	4	
8	Infinite Impulse-response (IIR) filters analog filter	4	To enable the students
	approximations		design a IIR filter from
	(Butterworth and Chebyshev)		analog filter and FIR
9	Impulse invariant transformation; bilinear	4	filter from design
	transformation; design of IIR filters from analog filters.		specifications
10	Characteristics of FIR filters; frequency response design	4	
	of FIR filters using window techniques		
11	comparison of IIR and FIR filters	4	
12	Multi-rate ProcessingDecimation; interpolation	4	
	sampling-rate conversion.		
	Implementation of sampling rate conversion		
13	Review and Class Test	2	To Review what is
			taught

Name of the Teacher:- Tridibendra Narayan Chattopadhyay

Designation:- Associate Professor, department of Electronics

PG Semester 4

Course Taught:- ELT-A-DSE-6-A-2-TH: Digital Signal Handling

Credits: 04

Lecture Hours: 28+2

Objective of the course:-

Week	Lessons Taught	No of	Learning Objective
		classes	
1	Analysis of Signals and Systems:	2	To enable the students
2	Discrete time signal analysis and linear systems.	2	understand the basic
3	Sampling of continuous time signals.	2	concepts of Digital signal
			processing
4	Z-transform, inverse z-transform.	2	To enable the students
5	Signal flow graph representation	2	understand and use the
6	Basic structures for IIR and FIR filters	2	mathematical tools needed
7	Noise in digital filters	2	for DSP and various design
8	Filter design techniques	2	concepts.
9	Discrete Fourier Transform (DFT)	2	
10	Fast Fourier Transforms (FFT)	2	
11	DSP Algorithm Implementation Considerations	2	To enable the students
12	Basic issues software implementation, computation of	2	design various Degital
	the DFT		filters from design
13	Tunable digital filters,	2	specification.
14	Concept of multirate digital signal processing	2	
15	Review and Test	2	To Review what is taught

Name of the Teacher:- Imtiaz Ahammad

Designation:- Assistant Professor, Department of Electronics

Class – B.Sc. UG Semester - I

Course Taught:-ELT-A-CC-1-1-TH: Basic Circuit Theory and Network Analysis

Credits: 04

Lecture Hours: 56

Objective of the Course:-

1. To develop an understanding of the fundamental laws and elements of electrical circuits.

- 2. To learn the energy properties of electric elements and the techniques to measure voltage and current.
- 3. To learn a number of powerful engineering circuit analysis techniques such as nodal analysis, mesh analysis, theorems, source transformation and several methods of simplifying networks.
- 4. To develop the ability to apply circuit analysis to DC and AC circuits.
- 5. Different types of two-port network analysis using network parameters, with different types of connections.
- 6. To understand the concept of graphical solution to electrical network.

Week	Lessons Taught	No of classes	Learning Objective
1	Classification of Circuit Elements, Fixed & Variable Resistors, Construction & Characteristics, Color coding of Resistors, Resistors in Series & parallel. Inductors, Fixed & Variable Inductors, Self & Mutual Inductance, Energy stored in Inductor, Inductor in Series & parallel, Testing of Resistance & Inductance using Multimeter	4	To Enable Students, understand the basic elements & make the students capable of analyzing any given electrical network and to learn techniques of solving circuits involving different active and passive elements.
2	Capacitors, Principle of Capacitance, Parallel plate capacitor, Energy stored in Capacitor, capacitor in Series & parallel, Air, Paper, Mica, ceramic, Plastic & Electrolytic Capacitor, Testing of inductance using Multimeter	4	
3	Ideal and Practical Voltage & Current Sources, Dependent Sources, Laws of conservation of flux Linkage and charge	4	Understand the concepts of basic circuit laws, mesh and
4	KVL, KCL, Node Analysis, Mesh Analysis, Linear Circuits, Principle of Duality, Star-Delta Conversation	4	Nodal analysis of circuits and circuit solving methods.
5	DC Transient Analysis: Transient Response of Series RL and RC circuits under DC excitation	4	To develop the ability to apply circuit analysis to DC circuits.
6	DC Transient Analysis: Transient Response of Series RLC circuits under DC excitation	4	
7	Review and Class Test	2	To review what is taught
8	AC Circuit Analysis: Sinusoidal Voltage & Current; Definition of Instantaneous, Peak to Peak, RMS & Averages Values, Voltage-Current relationship in Resistor, Inductor & Capacitor, Phasor, Complex Impedance, Instantaneous Power, Average Power, Reactive Power, Power factor	4	Analyze the frequency response of circuits containing inductors and capacitors and apply phasor analysis to AC circuits in sinusoidal steady state.
9	 A. Sinusoidal Circuit Analysis for RL, RC, Series & Parallel RLC circuits, Power in AC Circuits B. Resonance in Series & Parallel RLC Circuits, Quality (Q) Factor & Bandwidth 	4	
10	Passive Filters, Low Pass, High Pass, Band Pass & Band Stop Filters. Integrator & Differentiator	4	To analyze various types of filters
11	Network Theorems: Superposition Theorem, Millman's Theorem, Thevenin's Theorem, Norton's Theorem &	4	To Apply the concept of linearity and the associated

	Maximum Power Transfer Theorem		technique to circuits and
12	Network Theorems: Reciprocity Theorem, Compensation Theorem, Tellegen's Theorem, Bisection Theorem, AC circuit analysis using Network Theorems	4	networks & their knowledge in analyzing Circuits by using network theorems.
13	Two Port Networks: Impedance (Z), Admittance (Y) and Transmission (ABCD) Parameters	4	To Learn the concepts of Two- port Network theory and Analyze simple two-port circuit
14	Network Graph Theory: Equivalent Graph, Incidence Matrix, Fundamental Tie-Set, Cut-Set.	4	To Learn Network Analysis methods through the use of Graph Theory
15	Review and Class Test	2	To review what is taught

Name of the Teacher:- Imtiaz Ahammad

Designation:- Assistant Professor, Department of Electronics

Class – B.Sc. UG Semester - II

Course Taught:-ELT-A-CC-2-3-TH: Applied Physics

Credits: 04

Lecture Hours: 56

Objective of the Course:-

- 1. To develop an understanding of the importance of Applied Physics in describing the physical phenomena.
- 2. To employ the knowledge of crystallography and X-Rays to understand the structure-property relationship of materials.
- 3. To implement the concept of Theory of relativity and Quantum mechanics for research applications.
- 4. To evaluate thermal properties of solids using statistical approach

5.

6. To recognize the use of Magnetic materials and Superconductors in various fields.

Week	Lessons Taught No class		Learning Objective	
1	Crystalline Materials, Crystal Structure in Solids, Concept of Lattice & Basis, Crystal Axes & Planes, Primitive & Unit cells, Packing fraction of Simple, Body-centered & Face-centered Cubic lattices, Miller Indices, Calculation of Interplaner spacing for Cubic lattice.	4	To Enable Students, understand the basic elements & make the students capable of analyzing any given electrical network and to learn	
2	Concept of Reciprocal lattice, Bragg's Equation in Direct and Reciprocal lattice, Bonding in Solids, Basic Ideas of Metallic Bonds, Ionic Bonds, Covalent Bonds & Vander Wall's Bonds.	4	techniques of solving circuits involving different active and passive elements.	
3	Inadequacies of Classical Physics, Compton's Effect, Photo-Electric Effect, Blackbody Radiation, Wien's Law, Raleigh Jeans Law.	4	Understand the concepts of basic circuit laws, mesh and Nodal analysis of circuits and	
4	Planck's Law, Introduction of Wave Particle duality, de- Broglie's Hypothesis, Heisenberg's Uncertainty Principle, Probability density & Born Interpretation.	4	circuit solving methods.	
5	Basic Postulates & Formalism of Quantum Mechanics, Wave functions, Operator in Quantum Mechanics, Eigen states & Eigen values & Eigen functions, Schrodinger wave Equation, Particle in a one dimensional box, Extension to a three dimensional box.	4	To develop the ability to apply circuit analysis to DC circuits.	
6	Potential Barrier Problems (Free Electron, Electron in an Infinite Well), Qualitative Discussion of Phenomenon of Tunnelling, Kronig-Penney Model and Development of Band Structure, E-k Diagram in Solids, Classification of Conductors, Insulators and Semiconductors.	4		
7	Mechanical Properties of Materials: Concept of Elastic & Plastic Deformations, Hooke's Law, Elastic Moduli, Brittle and Ductile Materials, Tensile Strength.	4	To review what is taught	
8	Thermal Properties: Specific Heat in Solids, Phonons, Heat Capacity, Debye's Law, Basic Concept of Thermoelectricity, Laws of Thermodynamics, Concept of Entropy, Thermodynamic Potentials, Helmholtz Free Energy, Enthalpy Function, Gibb's Free Energy, Chemical Potential, Relation of Chemical Potential with Fermi Level.	4	Analyze the frequency response of circuits containing inductors and capacitors and apply phasor analysis to AC circuits in sinusoidal steady state.	

9	Review and Class Test	2	To review what is taught
10	Statistical Mechanics: Macroscopic & Microscopic States, Concept of Phase Space & Density of States, Statistical Interpretation of Entropy, Quantization of Phase Space.	4	To analyze various types of filters
11	Maxwell-Boltzmann Distribution Function, Fermi-Dirac Distribution Function and Bose-Einstein Distribution Function and their Importance.	4	To Apply the concept of linearity and the associated technique to circuits and
12	Electric Properties: Metals (Conductors), Basic Concept of Free Electron Theory, Conductivity of Metals, Ohm's Law, Relaxation Time, Collision Time and Mean Free Path, Electron Scattering and Resistivity of Metals, Heat Developed in Current Carrying Conductor, Concept of Superconductivity; Insulators, Dielectric Properties, Concept of Polarization, Permittivity & Dielectric Constant	2	networks & their knowledge in analyzing Circuits by using network theorems.
13	Semiconductors, Bonding in Elemental and Compound Semiconductors, Intrinsic and Extrinsic Semiconductor, Concept of Holes, Computation of Carrier Concentrations, Fermi Level in Semiconductors, E-k Diagrams to Explain Direct and Indirect Band gap Semiconductors.	2	To Learn the concepts of Two- port Network theory and Analyze simple two-port circuit
14	Magnetic Properties: Classification of Magnetic Materials, Magnetic Moment, Dia, Para, Ferro and Antiferro Magnetism, Ferrimagnetic Materials, Saturation Magnetisation, Curie Temperature.	2	To Learn Network Analysis methods through the use of Graph Theory
15	Review and Class Test	2	To review what is taught

Name of the Teacher:- Imtiaz Ahammad

Designation:- Assistant Professor, Department of Electronics

Class – B.Sc. UG Semester - II

Course Taught:-ELT-A-CC-3-5-TH: Semiconductor Devices

Credits: 04

Lecture Hours: 56

Objective of the Course:-

Week	Lessons Taught	No of classes	Learning Objective
1	Semiconductor Basics: Introduction to Semiconductor Material, Elemental & Compound Semiconductors, Direct & Indirect Band gap Semiconductors, Intrinsic & Extrinsic Semiconductors, Carriers in Semiconductors. Concept of Effective Mass, Density of States.	4	To Enable Students, understand the basic elements & make the students capable of analyzing any given electrical network and to learn
2	Carrier Concentration at Normal Equilibrium in Intrinsic Semiconductors, Dependence of Fermi Level on Temperature and Doping Concentration, Temperature Dependence of Carrier Concentrations, Charge Neutrality Condition, Degenerate & Non-Degenerate Semiconductors.	4	techniques of solving circuits involving different active and passive elements.
3	Carrier Transport Phenomena: Carrier Drift, Mobility, Resistivity, Hall Effect, Diffusion Process, Einstein Relation, Current Density Equation, Carrier Injection, Generation & Recombination Processes, Continuity Equation.	4	Understand the concepts of basic circuit laws, mesh and Nodal analysis of circuits and circuit solving methods.
4	Physics of Junctions: Homojunction & Heterojunction: Metal-Metal Contact, Metal-Semiconductor Contact (Both Ohmic & Schottky Junction).	4	
5	Formation of Depletion Layer / Space Charge Region at the Junction, Variation of Depletion Width in presence & absence of Field, Built-in Electric Field and Potential, Derivation of Electrostatic Potential Difference at Thermal Equilibrium, Junction Capacitance, Junction Breakdown Mechanism, Concept of Abrupt and Linearly Graded Junctions.	4	To develop the ability to apply circuit analysis to DC circuits.
6	PN Junction Diode: Current-Voltage Characteristics, DC and AC Equivalent Circuit (Eber's-Moll Equation & Charge Balance Equation). Varactor Diode, Solar Cell, Zener Diode.	4	
7	Review and Class Test	2	To review what is taught
8	Bipolar Junction Transistors (BJT): Basic Transistor Action, BJT as a Current Control Device, Energy Band Diagram of Transistor in Thermal Equilibrium,	4	Analyze the frequency response of circuits containing inductors and capacitors and apply phasor analysis to AC circuits in sinusoidal steady state.
9	Quantitative Analysis of Static Characteristics (Minority Carrier Distribution & Terminal Currents), Base-Width Modulation, Modes of Operation, Input and Output Characteristics of CB, CE and CC Configurations.	4	To review what is taught
10	Field Effect Transistors: Transverse Field Effect and Channel Isolation, Categories of FETs.	4	To analyze various types of filters

11	JFET: Construction, Channel Formation, Pinch-off and	4	To Apply the concept of
	Saturation Voltage, Current-Voltage Output Characteristics.		linearity and the associated
12	MOSFET: MOS Capacitor, Channel Formation, Threshold	4	technique to circuits and
	Voltage (Ideal &Real), Current-Voltage Relation, Depletion		networks & their knowledge
	& Enhancement Type MOSFET, Complimentary MOS		in analyzing Circuits by using
	(CMOS).		network theorems.
13	Power Devices: UJT, Construction, Working Principle,	4	To Learn the concepts of Two-
	Equivalent Circuit, Intrinsic Standoff Ratio, Characteristics,		port Network theory and
	Relaxation Oscillator,		Analyze simple two-port
			circuit
14	Power Devices: Basic Working Principle & Characteristics	4	To Learn Network Analysis
	of SCR, Diac and Triac.		methods through the use of
			Graph Theory
15	Review and Class Test	2	To review what is taught

Name of the Teacher:- Imtiaz Ahammad

Designation:- Assistant Professor, Department of Electronics

Class – B.Sc. UG Semester - II

Course Taught:-ELT-A-CC-4-9-TH: Digital Electronics and VHDL

Credits: 04

Lecture Hours: 56

Objective of the Course:-

Week	Lessons Taught	No of classes	Learning Objective		
1	Number System and Codes: Decimal, Binary, Hexadecimal and Octal Number Systems, Base Conversions and Arithmetic (Addition, Subtraction by Complement Method, Multiplication), Representation of Signed and Unsigned Numbers, Binary Coded Decimal (BCD) Code.	4	To Enable Students, understand the basic elements & make the students capable of analyzing any given electrical network and to learn		
2	Logic Gates and Boolean Algebra: Basic Postulates and Fundamental Theorems of Boolean Algebra, Switching Equivalent Circuits of Basic Gates, Truth Tables and Symbolic Representation of OR, AND, NOT, NAND, NOR XOR, XNOR Gates, Universal Logic Gates, Circuit Representation using Universal Logic Gates.	4	techniques of solving circuits involving different active and passive elements.		
3	Digital Logic Families: Fan-in, Fan-out, Noise Immunity, Noise Margin, Power Dissipation, Figure of Merit, Speed Power Product, TTL & CMOS Families & their Comparison.	4	Understand the concepts of basic circuit laws, mesh and Nodal analysis of circuits and		
4	Combinational Logic Analysis and Design: Standard Representation of Logic Functions (SOP and POS), Karnaugh Map (K-Map) Minimization,	4	circuit solving methods.		
5	Binary Adder and Subtractor (Half & Full), Parallel Adder/Subtractor, Comparator, Parity Checker	4	To develop the ability to apply circuit analysis to DC circuits.		
6	Multiplexers and Demultiplexers, Encoder and Decoder, Implementation of Logic Functions with Multiplexer	4	, , , , , , , , , , , , , , , , , , ,		
7	Review and Class Test	2	To review what is taught		
8	Sequential Logic Design: Latches and Flip Flops, Registers, Counters (Ripples, Ring, Johnson, Synchronous, Asynchronous and Modulo-N), State Table, State Diagrams,	4	Analyze the frequency response of circuits containing inductors and capacitors and apply phasor analysis to AC		
9	Counter Design using Excitation Table and Equations. Basic Concepts, ROM, PLA, PAL, CPLD, FPGA.	4	To review what is taught		
10	Memory: Memory Technology, Types of Memory, Volatile and Non-Volatile, ROM, PROM, EPROM, EEPROM, Flash Memory, SRAM, DRAM, SDRAM, Concept of Primary, Secondary and Cache Memory.	4	To analyze various types of filters		
11	Brief History of HDL, Structure of HDL Module, Introduction to Simulation and Synthesis Tools, Test Benches. VHDL Modules, Delays, Data Flow Style, Behavioral Style, Structural Style, Mixed Design Style, Simulating Design. Introduction to Language Elements, Keywords, Identifiers, White Space Characters, Comments, Format, VHDL Terms, Hardware in VHDL, Entity, Architectures, Concurrent signal Assignment, Event Scheduling, Statement Concurrency, Structural Designs.	4	To Apply the concept of linearity and the associated technique to circuits and networks & their knowledge in analyzing Circuits by using network theorems.		
12	Process Statements, Process Declarative Region, Process Statement Region, Process Execution, Sequential Statements, Architecture Selection, Configuration	4			

	Statements, Power of Configuration. Introduction to Behavioral Modeling, Inertial Delay and Model, Transport		
	Delay and Model, Inertial vs Transport Delay, Simulation		
	Delta Drivers, Driver Creation, Generics, Block Statements,		
	Guarded Blocks.		
13	Sequential Processing: Process Statement, Sensitivity List,	4	To Learn the concepts of Two-
	Signal Assignment vs Variable Assignment, Sequential		port Network theory and
	Statements, IF, CASE, LOOP, NEXT, EXIT and ASSERT		Analyze simple two-port
	Statements, Assertion BNF, WAIT ON Signal, WAIT		circuit
	UNTIL Expression, WAIT FOR Time Expression, Multiple		
	Wait Conditions, WAIT Time-Out, Sensitivity List vs WAIT		
	Statement Concurrent Assignment, Passive Processes.		
14	Data Types: Object Types, Signal, Variable, Constant, Data	4	To Learn Network Analysis
	Types, Scalar Types, Composite Types, Incomplete Types,		methods through the use of
	File Type Caveats, Subtypes, Subprograms and Functions.		Graph Theory
15	Review and Class Test	2	To review what is taught

Name of the Teacher:- Imtiaz Ahammad

Designation:- Assistant Professor, Department of Electronics

Class - B.Sc. UG Semester - II

Course Taught:-ELT-A-DSE-5-A-2-TH: Digital Electronics and VHDL

Credits: 04

Lecture Hours: 56 Objective of the Course:-

- 1. To introduce basic Control Theory and establish the fundamentals of devices in Control applications
- 2. To introduce different types of system and identify a set of algebraic equations to represent and model a complicated system
- **3.** To understand concepts of the mathematical modelling, feedback control and stability analysis in Time and Frequency domains
- **4.** To understand system stability concept and learn methods for examining system stability in both time and frequency domains including determining the system stability margins

Week	Lessons Taught	No of classe	Learning Objective
1	Introduction to Control Systems: Open Loop and Closed Loop Control Systems, Mathematical Modeling of Physical Systems (Electrical, Mechanical and Thermal),	4	To understand the basics of control systems, Feedback and non-feedback systems and their
2	Derivation of Transfer Function, Block Diagram Representation. Reduction Technique. Simple Problem	4	applications Transfer function, block diagram representation and reduction techniques.
3	Signal Flow Graph, Reduction Technique, Mason's Gain Formula, Effect of Feedback on Control Systems.	4	-
4	Time Domain Analysis: Time Domain Performance Criteria, Transient Response of First, Second and Higher Order Systems	4	Understand Transient response of first and second order systems to standard inputs
5	Steady State Errors and Static Error Constants, Performance Indices.	4	
6	Concept of Stability: Asymptotic Stability and Conditional Stability, Routh-Hurwitz Criterion, Relative Stability Analysis, Root Locus Plots and their Applications.	4	Analyze stability of Linear system and understanding to Draw the root loci
7	Review and Class Test	2	To review what is taught
8	Frequency Domain Analysis: Correlation between Time and Frequency Response, Polar & Inverse Polar Plots.	4	Understanding to analyze and test the performance of feedback control systems in
9	Frequency Domain Specifications, Logarithmic Plots (Bode Plots), Gain and Phase Margins	4	frequency-domain and the Stability of a linear system
10	Nyquist Stability Criterion, Relative Stability using Nyquist Criterion, Constant M and N Circles.	4	using Bode Plot and Nyquist stability criterion
11	State Space Analysis: Definitions of State, State Variables, State Space, Representation of Systems, Solution of Time Invariant,	4	Understand the modelling of linear-time-invariant systems using state space forms
12	Homogeneous State Equation, State Transition Matrix and its Properties.	4	-
13	Controllers and Compensation Techniques: Response with P, PI and PID Controllers Relaxation Oscillator.	4	Ability to understand and analyze the impact of different controllers on linear system.
14	Concept of Compensation, Lag, Lead and Lag-Lead Networks.	4	Understanding the designing of different type of compensators
15	Review and Class Test	2	To review what is taught

Name of the Teacher:- Tridibendra Narayan Chattopadhyay

Designation:- Associate Professor, department of Electronics

UG Semester 4

Course Taught:- ELT-A-SEC-4-B-2-TH: Programming with Scilab

Credits: 02

Lecture Hours: 28+4

Objective of the Course:- To enable the students, solving Electronic and physics problems

with Scilab Programming.

Week	Lessons Taught	No of	Learning Objective
		classes	
1	SCILAB Environment, Basic Computer Programming,	2	To Enable Students,
	Variables and Constants		understand the basic
2	Operators and Simple Calculations, Formulas and	2	features of SCILAB
	Functions, SCILAB Toolboxes		command window
3	Matrix and Linear Algebra Review	2	To Enable Students,
4	Vectors and Matrices in SCILAB	2	understand the basic
5	Matrix Operations and Functions in SCILAB.	2	features of SCILAB
6	Algorithms and Structures,	2	Programming
7	Review and Class Test	2	To review what is taught
8	SCILAB Scripts and Functions (m-Files),	2	To Enable Students,
9	Simple Sequential Algorithms, Control Structures.	2	writing regular SCILAB
10	Reading and Writing Data, File Handling,	2	codes
11	Personalized Functions, Toolbox Structure,	2	
12	SCILAB Graphic Functions.	2	
13	Numerical Methods and Simulations,	2]
14	Random Number Generation,	2	To Enable Students,
15	Montecarlo Methods.	2	solve simple problems of
16	Review and Class Test	2	Physics and Electronics

Name of the Teacher:- Tridibendra Narayan Chattopadhyay

Designation:- Associate Professor, department of Electronics

UG Semester 6

Course Taught:- ELT-A-DSE-6-A-2-TH: Digital Signal Processing

Credits: 04

Lecture Hours: 56+4

Objective of the Course:- To enable the students, designing Simple Digital filters

Week	ϵ		Learning Objective	
		classes		
1	Discrete Sequences, Linear Coefficient Difference	4	To enable the students,	
	Equation		understand the	
2	Representation of DTS,	4	fundamental of digital	
	LSI Systems. Stability and Causality,		signals	
3	Frequency Domain Representations and Fourier	4		
	Transform of DT Sequences.			
4	Concept and Properties of Pole-Zero, Synthesis of Two	4	To enable the students,	
	Terminal Reactive Networks,		understand the	
5	Foster's Reactance Theorem, Network Realization of	4	fundamental of Network	
	Reactance Function, Canonical Networks.		synthesis	
6	Fraction Networks (Cauer Networks), Synthesis of Two	4		
	Terminal R-C and R-L Networks, Positive Real			
_	Functions, Numerical problems			
7	Review and Class Test	2	To review what is taught	
8	DFT Assumptions and Inverse DFT, Matrix Relations,	4	To enable the students,	
	Relationship with FT and		understand the	
	its Inverse, Circular Convolution	1	fundamental of Discrete	
9	DFT Theorems, DCT, Computation of DFT, FFT	4	Fourier Transform	
10	Algorithms and Processing Gain	+ ,	4	
10	Discrimination, Interpolation and Extrapolation, Gibbs	4		
	Phenomena, FFT of Real Functions	1	4	
11	Interleaving and Resolution Improvement, Word Length	4		
10	Effects	1	m 11 . 1 .	
12	Analog Filter Review, Concept of Filters in Signal	4	To enable students,	
	Processing, Filter Parameters, Concept of		understand the principals	
12	LP, HP, BP, Notch Filters.	4	of electronic filter	
13	Types of Filters, Butterworth and Chebyshev, System	4	design.	
	Function for IIR and FIR Filters			
14	FIR Filter Realization Techniques, Discrete Correlation	4	To enable the students,	
	and Convolution, Properties and , Limitations.		Design FIR and IIR type	
			Digital filters	
15	Network Representation, Canonical and Decomposition	4		
	Networks, IIR Filter Realization Methods and their			
	Limitations			
16	Review and Class Test	2	To review what is taught	

Name of the Teacher: - Munna Dutta Ghose

Designation: - SACT-II, Department of Electronics

PG Semester 1

Course: - EST-103 -TH: Physics of Electronic Materials

Credits: 04

Lecture Hours: 50

Objective of the Course:- To provide a detailed understanding of the physical principles underlying the behaviour and properties of electronic materials. This course typically covers topics such as crystal structure, band theory of solids, semiconductor physics, and the properties of various electronic materials.

Week	Lessons Taught	No of	Learning Objective
		classes	
1	Crystal structure and symmetries, determination of	4	Students are expected to
	crystal structure by X-ray diffraction, crystal		develop a deep understanding
	binding, lattice vibration, concept of phonons,		of crystallography and
	defects in solids		symmetry, which are
2	Free electron theory of metals, energy band in	4	fundamental concepts in the
	solids, Bloch theorem, Kronig Penny model, E-k		study of materials science and
	diagram		solid-state physics.
3	Concept of effective mass, electrons in weak	4	
	periodic potential, tight binding model		Students are expected to have
4	F-D statistics, density of states, carrier	4	a comprehensive
	concentration, carrier transport in semiconductor,		understanding of the Hall
5	SRH recombination model, continuity equation,	4	effect and its applications, as
	Boltzmann transport equation and transport		well as the ability to apply this
	coefficients		knowledge to solve practical
6	Electron dynamics under electric and magnetic	4	problems in materials science
	fields, Hall effect		and physics.
7	Dielectric and magnetic properties of materials:	4	
	polarization and dielectric constant		students are expected to have
8	Clasius-Mossotti relation, electronic and ionic	4	a thorough understanding of
ı	polarizability, dielectric loss		the concepts of polarization
9	ferroelectric materials,	4	and dielectric constant, as well
	domain theory		as the ability to apply this
10	piezoelectricity and pyroelectricity, applications of	4	knowledge to analyze and
	ferroelectric materials		design materials for various
11	Organic semiconductor and conducting polymers	4	applications.
12	liquid crystals, introductory concepts of	4	1
	nanomaterials.		
13	Doubt clear class	2	1

Name of the Teacher: - Munna Dutta Ghose

Designation: - SACT-II, Department of Electronics

UG Semester 1

Course: - ELT-A-CC-2-TH: Mathematics Foundation for Electronics

Credits: 04

Lecture Hours: 56

Objective of the Course:- To provide a strong mathematical foundation that is essential for understanding and analysing electronic systems and circuits. The course typically covers topics such as calculus, differential equations, linear algebra, complex numbers, and Fourier analysis, among others.

Week	Lessons Taught	Sub-Topic	No of	Learning Objective
			classes	
1		1 st Order ordinary differential	2	These objectives provide a solid
		equation and basic concept		foundation for students to apply
1		Separable Ordinary differential	1	differential equations in diverse
		equation		scientific contexts and prepare
1	Ordinary	Exact Ordinary differential	1	them for more advanced studies
	Differential	equation		in applied mathematics or related
2	Equation	Linear Ordinary differential	1	fields
		equation		
2		2 nd Homogeneous &Non-	2	
		Homogeneous differential		
		equations		
2		Power Series method	1	These objectives provide students
3		Legendre Polynomials.	1	with a comprehensive
3	Series Solution of	Frobenius Method	1	understanding of the theory and
3	differential	Bessels Equations and Bessel's	2	applications of series solutions
	equations and	Functions of First and Second Kind,		and special functions, preparing
4	special functions	Error Functions and Gamma	2	them for more advanced studies
		Function		in applied mathematics or related
				fields.
4		Introduction to Matrices	1	These learning objectives aim to
4		System of Linear Algebraic	1	provide B.Sc students with a solid
		Equations		foundation in matrix algebra,
5		Gaussian Elimination Method	1	equipping them with the
5	Matrices	Gauss-Seidel Method	1	mathematical tools necessary for
5		LU Decomposition, Solution of	1	further studies in various
		Linear System by LU		scientific disciplines, including
		Decomposition		physics, engineering, computer
5		Eigenvalues and	1	science, and applied
		Eigenvectors		mathematics.
6		Linear Transformation, Properties	1	
		of Eigenvalues and Eigenvectors		

Week	Lessons Taught	Sub-Topic	No of classes	Learning Objective
6		Cayley-Hamilton Theorem, Diagonalization	1	
6		Powers of a Matrix, Real and Complex Matrices	1	
6		Symmetric, Skew Symmetric, Orthogonal Quadratic Form Hermitian, Skew Hermitian, Unitary Matrices	1	
7		Sequences, Limit of a Sequence,	1	These learning objectives aim to
7		Convergence, Divergence and Oscillation of a Sequence	2	provide B.Sc students with a comprehensive understanding of sequences and series, enabling
7	-	Infinite Series	1	them to apply these concepts
8		Necessary Condition for Convergence	1	across various mathematical and scientific disciplines.
8		Cauchy's Integral Test, D'Alembert's Ratio Test	1	, '
8	Sequences and	Cauchy's nth Root Test, Alternating Series	2	
9	Series	Leibnitz's Theorem, Absolute Convergence and Conditional Convergence, Power Series	2	
9		Complex Variable, Complex Function, Continuity, Differentiability	2	These objectives aim to provide B.Sc students with a solid
10		Analyticity, Cauchy-Riemann (C-R) Equations, Harmonic and Conjugate Harmonic Functions,	2	foundation in complex analysis, preparing them for advanced studies in mathematics and its
10		Exponential Function, Trigonometric Function, Hyperbolic Function	2	applications in science and engineering.
11	Complex Variables and	Line Integral in Complex Plane, Cauchy's Integral Theorem, Cauchy's Integral Formula	2	
11	Functions	Derivative of Analytic Functions, Sequences	1	
11		Series and Power Series, Taylor's Series, Laurent Series	1	
12		Zeroes and Poles, Residue Integration Method, Residue Integration of Real Integrals	2	
12	Laplace	Properties of Laplace Transform	3	These objectives aim to equip
13	Transform	Laplace Transform of Different Signals	2	B.Sc students with the knowledge and skills necessary to apply
13		Inverse Laplace Transform and Applications in Circuit Analysis,	3	Laplace transforms in solving engineering problems, analysing systems, and understanding

Week	Lessons Taught	Sub-Topic	No of	Learning Objective
			classes	
14		Equivalent Circuit of Inductor and	2	dynamic behaviours in various
		Capacitor in s-Domain		scientific and engineering
				disciplines.

Name of the Teacher: - Munna Dutta Ghose

Designation: - SACT-II, Department of Electronics

UG Semester IV

Course: - ELT-A-CC -4-08-TH: Operational Amplifiers and applications

Credits: 04

Lecture Hours: 56

Objective of the Course:- To provide a strong mathematical foundation that is essential for understanding and analysing electronic systems and circuits. The course typically covers topics such as calculus, differential equations, linear algebra, complex numbers, and Fourier analysis, among others.

Week	Lessons Taught	Sub-Topic	No of	Learning Objective
			classes	
1		Concept of Differential Amplifiers	2	These objectives aim to provide
		(Dual Input and Balanced and		B.Sc students with a solid
		Unbalanced		foundation in understanding,
	Basic Operational	Output), Constant Current Bias,		analysing, and designing basic
	Amplifier	Current Mirror, Cascaded		operational amplifier circuits,
		Differential Amplifier Stages with		preparing them for further
		Concept of Level		studies in electronics and related
		Transistor,		fields.
1		Ideal Op-Amp and its	1	
		Characteristics		
1		Ideal Op-Amp and its	1	
		Characteristics		
2		Block Diagram of Op-Amp (IC 741)	1	
2		Deviations for a Real	2	
		Op-Amp from Ideal Behavior.		
2		Input offset voltage, Input offset	1	These objectives aim to provide
		current		B.Sc students with a
3		Input bias current, Differential	1	comprehensive understanding of
		input resistance		the various parameters that
3	Op-Amp	Input capacitance, Offset voltage	1	characterize op-amp behaviour.
	Parameters	adjustment range		Mastery of these parameters is
3		Input voltage range, Common	2	essential for designing and
		mode rejection ratio		analysing circuits in a wide range
4		Slew rate, Supply voltage rejection	2	of electronic applications.
		ratio		
4		Open and Closed Loop	1	These learning objectives aim to
		Configuration, ,		provide B.Sc students with a
		,		comprehensive understanding of
				various op-amp circuits and their
4		Frequency Response	1	applications in electronic systems
5		Inverting, Non-Inverting	1	and signal processing. Mastery of
5	Op-Amp Circuits	Summing and Difference Amplifiers	1	these concepts prepares students
5	and Applications	Integrator, Differentiator	1	for applications in fields such as

Week	Lessons Taught	Sub-Topic	No of classes	Learning Objective
5		Multiplier and Divider	1	telecommunications,
6	-	Voltage to Current and Current to	1	instrumentation, control systems,
		Voltage Convertor	1	and more.
6	-	Instrumentation Amplifier	1	and more.
6	-	Multivibrators	1	
6	-	Numerical Problems	1	
0		Numerical Problems	1	
7		Basic Comparator, Level Detector,	1	These learning objectives aim to
		Voltage Limiters		provide B.Sc students with a solid
7		Schmitt Trigger, Concept of	2	understanding of comparator
		Sinusoidal and Relaxation Type		principles, configurations, and
7	1	Phase Shift Oscillator	1	applications, preparing them for
8		Wien Bridge Oscillator	1	various fields such as electronics,
	Comparators and			control systems, and signal
8	Signal Generators	Square Wave Generator	1	processing.
8	-	Triangle Wave Generator, Saw	2	
		Tooth Wave Generator		
9	-	Voltage Controlled Oscillator	2	
		(IC 566).		
9		Multivibrators (IC 555), Functional	2	
		Block Diagram	_	
10	1	Astable and Monostable	2	These learning objectives aim to
		Multivibrator Circuits	_	provide B.Sc students with a
10	-	Applications	2	comprehensive understanding of
11	-	Phase Locked Loops (PLL),	2	timer circuits, their modes of
11	Timers Circuits	Block Diagram of IC565	1	operation, and their applications
11	-	Phase Detectors	1	in electronics and control
	_			systems. Mastery of these
12		Voltage Controlled Oscillator (IC	2	concepts prepares students for
		566)		various fields, including digital
				electronics, communications, and
				embedded systems.
12	Fixed and	IC 78xx and IC 79xx (Concepts	3	These learning objectives aim to
12	Variable IC	only), IC LM317, Output Voltage		provide B.Sc students with a
	Regulators and	Equation, SMPS, Principle of DC-to-		comprehensive understanding of
	Signal	DC Conversion		signal generators, enabling them
13	Conditioning	Block Diagram Representation of	2	to use these instruments
13	Circuits	SMPS Module Sample and Hold		effectively in laboratory
	Circuits	Systems		experiments, testing, and analysis
12	-		3	across various scientific and
13		Active Filters, Butterworth Filter, First and Second Order Low Pass	٥	engineering disciplines.
				chgineering disciplines.
1.4	-	and High Pass Filters	2	
14		Band Pass Filter, Band Reject Filter,	4	
		All Pass Filter, Log and Antilog		
		Amplifiers		

Name of the Teacher: - Munna Dutta Ghose

Designation: - SACT-II, Department of Electronics

UG Semester V

Course: - ELT-A-DSE-5-B-2-TH: Power Electronics

Credits: 04

Lecture Hours: 56

Objective of the Course:- To provide a comprehensive understanding of power electronic circuits and systems. Power electronics is a crucial field in electrical engineering that deals with the control and conversion of electrical power using electronic devices.

Week	Lessons Taught	Sub-Topic	No of	Learning Objective
			classes	
1		Need for Semiconductor Power	2	These learning objectives
		Devices,		aim to provide B.Sc students
1		Power Diodes, Enhancement of Reverse	1	with a solid understanding of
		Blocking Capacity		power devices, enabling
1	Power Devices	Introduction to Family of Thyristors	1	them to design and analyze
				power electronic systems
				and contribute to various
				fields such as energy,
				automation, and electronic
2		Characteria True Transistes Analas 137	1	devices.
2		Structure, Two Transistor Analogy, I-V	1	
3		Characteristics Turn-On and Turn-Off Characteristics,	1	
3		,	1	
		Ratings, Factors affecting the Characteristics/Ratings of SCR,		
3		Gate-Triggering Circuits, dv/dt	1	
3	Silicon Controlled	Triggering Circuits, Control Circuits	1	These learning objectives
	Rectifier (SCR)	Design and Protection Circuits, Snubber		aim to provide B.Sc students
	and its application	Circuit		with a solid understanding of
3		SCR as Static Switch, Phase Controlled	2	power devices, enabling
		Rectification		them to design and analyze
4		Single Phase Half Wave, Full Wave and	2	power electronic systems
		Bridge Rectifiers with Inductive and		and contribute to various
		Non-Inductive Loads, AC Voltage		fields such as energy,
		Control using SCR and Triac as Switch		automation, and electronic
4		Basic Structure of Diac and Triac	2	devices. These learning objectives
4		Working and V-I Characteristics	1	aim to provide B.Sc students
5	Diac and Triac and	Application of Diac as Triggering Device	2	with a solid understanding of
	Insulated Gate	for Triac.		power devices, enabling
5	Bipolar	Basic Structure of IGBT	1	them to design and analyze
5	Transistors (IGBT):	I-V Characteristics	1	power electronic systems
5		Switching Characteristics	1	and contribute to various
6		Device Limitations	1	fields such as energy,

Week	Lessons Taught	Sub-Topic	No of classes	Learning Objective
6		Safe Operating Area (SOA) etc.	1	automation, and electronic
6				devices.
6				
7		Operation Modes	1	
7		Switching Characteristics	2	These learning objectives
7		Power BJT, Second Breakdown,	1	aim to provide B.Sc students
		Saturation and Quasi-Saturation State.		with a comprehensive
8	Power MOSFETs	Need for Commutating Circuits and	1	understanding of Power
	and Power	their Various Types		MOSFETs, enabling them to
8	Inverters	DC Link Inverters	1	analyze, design, and
8		Parallel Capacitor Commutated	2	implement power electronic
		Invertors with and without Reactive		systems for various
		Feedback and its Analysis, Series		applications in energy
		Inverter,		control and conversion.
9		Limitations and its Improved Versions,	2	
		Bridge Inverters		
9		Basic Chopper Circuit, ,	2	
		p.		These learning objectives
10		Types of Choppers (Type A-D), Step-	2	aim to provide B.Sc students
		Down and Step-Up Choppers		with a comprehensive
10	Choppers	Operation of DC Chopper Circuits using	2	understanding of choppers,
		Self-Commutation (A-Type and B-Type		enabling them to analyze,
		Commutating Circuit)		design, and implement
11		Cathode Pulse Turn-Off Chopper (using	2	chopper-based systems for
		Class D Commutation)		various applications in
11		Load Sensitive Cathode Pulse Turn-Off	2	energy conversion and
		Chopper (Jones Chopper)		control.
11		Morgan's Chopper	2	
12				
12		Basics, Series, Shunt, Buck, Boost, Buck-	3	These courses aim to provide
		Boost, Cuk.		students with a solid
		DC Motors, Basic understanding of		foundation in the theory and
	Regulators and	Field and Armature	_	application of regulators,
13	Converters and	Principle of Operation,	2	converters, and
	Electromechanical	EMF Equation, Back EMF, Factors		electromechanical machines,
	Machines	Controlling Motor Speed		preparing them for careers in
13		Thyristor Based Speed Control of DC	3	industries such as power
		Motors, AC Motor (Induction Motor		electronics, power systems,
4.		only)		and electric machinery
14		Rotor and Stator, Torque and speed of	2	
		Induction Motor, Thyristor Control of		
		AC Motors (Block Diagrams only).		

Name of the Teacher: - Munna Dutta Ghose

Designation: - SACT-II, Department of Electronics

UG Semester VI

Course: - ELT-A-DSE-6-B-2-TH: Transmission Lines, Antenna and Microwave Devices

Credits: 04

Lecture Hours: 56

Objective of the Course:- To provide a comprehensive understanding of the principles and applications of transmission lines, antennas, and microwave devices in the field of electronics and communication engineering.

Week	Lessons Taught	Sub-Topic	No of	Learning Objective
			classes	
1	Transmission Lines	Typical Transmission Lines, Co-Axial, Two Wire, Microstrip, Coplanar and Slot Lines, Transmission Line Parameters, Transmission Line Equations, Wave Propagation in Transmission Lines	2	These learning objectives aim to provide B.Sc students with a comprehensive understanding of transmission lines, enabling them to analyze, design,
1	Transmission Lines	Characteristics Impedance,	1	and optimize systems for
		Propagation Constant, Lowloss and Lossless and Distortionless Line, Input Impedance, Reflection Coefficient, Standing Wave and Standing Wave Ratio	1	efficient energy transfer and signal propagation.
1		Power and Lossy Lines, Short- Circuited and Open-Circuited Line, Matched Line, Smith Chart, Transmission Line Applications	1	
2		Wave Propagation between Parallel	1	These learning objectives
		Conducting Planes		aim to provide B.Sc
3		TEM, TE and TM Modes	1	students with a
3	Guided Waves and Waveguides	Rectangular Waveguides, Circular Waveguides	1	comprehensive understanding of guided
3		Power Transmission and Attenuation, Rectangular Cavity Resonators	2	waves and waveguides, enabling them to analyze,
4		Directional Couplers, Isolator, Circulator	2	design, and implement systems for efficient guided wave propagation in various applications.
4		Concept of Retarded Potentials,	2	These learning objectives
	Antenna	Antenna Radiation Mechanism,		aim to provide B.Sc
	Fundamentals and	Current Distribution on a Thin Wire		students with a
	Parameters	Antenna,		comprehensive
4		Input Impedance, Radiation	1	understanding of antenna
		Resistance, Radiation Pattern (Field,		fundamentals and
		Power, and Phase Patterns)		parameters, enabling them

Week	Lessons Taught	Sub-Topic	No of classes	Learning Objective
5		Radiation Power Density, Radiation Intensity, Directive Gain, Directivity, Power Gain	2	to analyze, design, and implement effective antenna systems for various
5		Antenna Efficiency, Beamwidth, Bandwidth	1	communication applications.
5		Beam Efficiency, Effective Height	1	
5		Effective Aperture, Aperture Efficiency	1	
6		Polarization, Antenna Noise	1	
6		Temperature and Noise Figure	1	
6				
6				
7		Radiation from Elementary Dipole (Hertzian Dipole)	1	These learning objectives
7		Field Regions around Antenna (Radiation, Induction and Electrostatic Fields)	2	aim to provide B.Sc students with a comprehensive
7	Antenna as	Radiation Field of Half Wave Dipole, and their Radiation Resistance	1	understanding of how antennas function as both
8	Transmitter/Receiver Types of Antennas	Monopole, Dipole, Folded Dipole, Loop Antenna	1	transmitters and receivers in various communication
8	(Qualitative Study Only)	Helical, Rhombic Yagi-Uda, Log Antenna	1	systems, preparing them for roles in the design and
8		Periodic, Horn, Parabolic Reflector Antenna	2	optimization of wireless communication
9		Antenna Array, Microstrip Antenna	2	technologies.
9		Different Modes of Propagation,	2	These learning objectives
10		Ground Wave, Space Wave	2	aim to provide B.Sc
10		Radio Horizons, Sky Wave	2	students with a
11		Structure of Ionosphere	2	comprehensive
11	Propagation of Radio Waves	Critical Frequency, Maximum Usable Frequency (MUF)	2	understanding of radio wave propagation, enabling
11		Skip Distance, Virtual Height, Duct	2	them to analyze, design,
12		Propagation.		and optimize
				communication systems in diverse environments.
12		Microwave Domains, Two-Cavity Klystron, Reflex Klystron	3	These learning objectives aim to provide B.Sc students
13	Microwave Devices (Qualitative Study	Travelling Wave Tube (TWT) Magnetron	2	with a comprehensive understanding of microwave
13	Only)	Transferred Electron Mechanism and Gunn Diode, Avalanche Transit Time Mechanism	3	devices, enabling them to analyze, design, and implement microwave
14		IMPATT Diode, Tunnel Diode	2	systems for various applications in communication and technology.

Name of the Teacher: - Dr. Sudarsan Barui

Designation: - Assistant Professor, Department of Electronics

PG Semester 2

Course Taught: - EST 201: Analog Circuits and Systems

Credit: 4

Lecture Hours: 48+2

Objective of the Course: - To enable the students, understand the fundamentals of Analog Circuits and small signal models and its application in various engineering fields.

Week	Lessons Taught	No of classes	Learning Objective
1	Introduction to Analog circuits, network theorems, Applications of transform methods in network analysis	4	To enable students, understand the
2	Passive filters and analysis	4	fundamentals of circuits and network theorems
3	Properties and synthesis of passive and active networks, Positive real function,	4	To enable students,
4	Cauer's and Forter's reactance theorem	4	understand the real functions, theorems and
5	LC ladder network, poles and zeros of network functions	4	poles zeros
6	Small signal models of Diode, BJT and MOSFETs	4	Students will be able to
7	Analyses of various active circuits in different frequency ranges, Feedback amplifiers	4	understand the fundamentals of different
8	Power and tuned amplifiers	4	circuit element and different amplifiers
9	Operational amplifier, architecture, differential amplifiers, applications of OPAMP	4	
10	Active filters, Switch capacitor filter	4	To familiarise the
11	Sinusoidal feedback oscillators, relaxation oscillators	4	students with active filters, oscillators and
12	555 timer, VCO and PLL operation	4	wave form generation
13	Review and Class Test	2	To Review what is taught

Name of the Teacher: - Dr. Sudarsan Barui

Designation: - Assistant Professor, Department of Electronics

UG Semester 3

Course Taught: - ELT-A-SEC-3-A-2-TH: Circuit Modelling using PSPICE

Credits: 02

Lecture Hours: 28+4

Objective of the Course: - To enable the students, a fundamental understanding of PSPICE

Software and its applications in various engineering fields.

Week	Lessons Taught	No of	Learning Objective
	_	classes	
1	Introduction to Pspice Software.	2	To Enable Students,
			understand the basic
2	File types, Concept of Netlist Commands.	2	features of PSPICE
			Software
3	DC, AC, Transient analysis	2	To Enable Students,
4	Analog behavioural models, IF statement	2	understand the basic &
5	Voltage, Current and Frequency Dependent Sources	2	advanced features of
6	Advanced analyses, noise analyses	2	PSpice Programming
7	Monte-Carlo analyses	2	
8	Review and Class Test	2	To review what is taught
9	Solution of simple series circuit, Thevenin Solution	2	
10	PSpice I-V characteristic with temperature dependence	2	
11	Diode models,Rectifier, clipping, Zener circuits	2	Students will be able
12	BJT, AC,DC, transient and bias point simulations, Small	2	to simulate and
	signal analyses, Pspice models		predict the behaviour
13	Common emitter Amplifier, emitter follower, input	2	of Basic circuit
	output impedence.		
14	MOSFETS, AC,DC, transient and bias point	2	elements
	simulations, Small signal analyses, Small signal models		
15	common source Amplifier, Source follower, input output	2	
	impedence. OP Amps Analyses		
16	Review and Class Test	2	To review what is taught

Name of the Teacher: - Dr. Sudarsan Barui

Designation: - Assistant Professor, Department of Electronics

UG Semester 5

Course Taught: - ELT-A-CC-5-12-TH: Microprocessors and Microcontrollers

Credits: 04 Lecture Hours: 56+4

Objective of the Course: - To enable the students, a fundamental understanding of

Microprocessors and Microcontrollers and its applications in various engineering fields.

Week	Lessons Taught	No of	Learning Objective
		classes	
1	Introduction to Microprocessors, Classification, Block diagram.	4	To enable the students, understand the
2	8085 Architecture, block diagram, Registers, Address and Data bus, Control signal generation	4	fundamental of Microprocessors
3	Pin description of 8085 and analyses, Basic interfacing concepts, memory mapped and I/O mapped interfacing, DMA	4	
4	Opcode,8085 instructions, Different instructions classification and format,	4	To enable the students, understand the
5	Some examples of Assembly language programming (ALP)	4	Operations and writing the ALP of 8085
6	Stack & Subroutine, call, return instructions, Counters, Timing diagrams, Instruction Cycle, Machhine Cycle, T- States, Time delay	4	Microprocessor
7	Interrupt structure of 8085, vectored and non-vectored interrupts, 8255 chip interfacing and control word format	4	
8	Review and Class Test	2	To review what is taught
9	Introduction to microcontroller, classifications	4	To enable the students, understand the
10	CISC vs. RISC Architectures, memory types	4	fundamentals of
11	Clocking, interrupts, timers, periferals	4	Microcontroller
12	PIC16F887 microcontroller, architecture, PIN diagram, Program and data memory organization, I/O ports	4	To enable students,
13	Different module: oscillator module, timer (0,1,2) module, comparator module, ADC module etc.	4	understand the basic features and operations
14	Data eeprom, Special features of CPU, interrupts, addressing modes, instruction set	4	of PIC microcontroller
15	Interfacing of LED, DC motor, etc. to PIC 16F887	4	
16	Review and Class Test	2	To review what is taught

Name of the Teacher: - Dr. Sudarsan Barui

Designation: - Assistant Professor, Department of Electronics

UG Semester 6

Course Taught: - ELT-A-CC-6-13-TH: Communication Electronics

Credits: 04 Lecture Hours: 56+4

Objective of the Course: - To enable the students, a fundamental understanding of Electronic Communication Systems and its applications in various engineering fields.

Week	Lessons Taught	No of	Learning Objective
		classes	
1	Electronic Communication System, Block Diagram, EM Spectrum	4	To enable the students, understand the
2	Concept of Channel, Base band Signal, Band designations and applications, Modulation Significance	4	fundamentals of Electronic
3	Concept of Noise, types, S/N ratio, Noise figure, Noise Temperature	4	Communication
4	Friis Transmission Equation, Modulation techniques, Amplitude modulation, modulation index and frequency spectrum, Generation of AM	4	Students will be able to understand the
5	Demodulation techniques, Diode detector, Concept of DSBSC, SSBSC	4	fundamentals of AM modulation and
6	Pilot carrier Amplitude modulation, VSB modulation, Independent side band modulation	4	demodulation techniques as well as transmitter and
7	AM transmitter and receiver, different stages, Super heterodyne receiver, Advantages	4	receiver
8	Review and Class Test	2	To review what is taught
9	Frequency and phase modulation, modulation index and frequency spectrum, Equivalence between FM and PM	4	Students will be able to understand the
10	Generation of FM, PLL FM detector, Block diagram of FM transmitter	4	fundamentals of FM and PM modulation and
11	FM receiver, different stages, AM, FM and PM Comparison, Sampling theorem, PAM modulation and detection techniques	4	demodulation techniques
12	PDM, PPM modulation and detection techniques, Multiplexing, TDM and FDM	4	Students will be able to understand the
13	Pulse code modulation, Need for digital transmission, Quantization, Companding, coding and decoding	4	fundamentals of Pulse analog and Pulse code modulation techniques
14	Block diagram of digital transmission and reception, bit rate, baud rate, ASK techniques and analyses	4	Students will be able to understand the fundamentals of Digital
15	FSK, PSK, BPSK and QPSK techniques and analyses	4	carrier modulation techniques.
16	Review and Class Test	2	To review what is taught